DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification.
نویسندگان
چکیده
DNA barcoding employs short, standardized gene regions (5' segment of mitochondrial cytochrome oxidase subunit I for animals) as an internal tag to enable species identification. Prior studies have indicated that it performs this task well, because interspecific variation at cytochrome oxidase subunit I is typically much greater than intraspecific variation. However, most previous studies have focused on local faunas only, and critics have suggested two reasons why barcoding should be less effective in species identification when the geographical coverage is expanded. They suggested that many recently diverged taxa will be excluded from local analyses because they are allopatric. Second, intraspecific variation may be seriously underestimated by local studies, because geographical variation in the barcode region is not considered. In this paper, we analyse how adding a geographical dimension affects barcode resolution, examining 353 butterfly species from Central Asia. Despite predictions, we found that geographically separated and recently diverged allopatric species did not show, on average, less sequence differentiation than recently diverged sympatric taxa. Although expanded geographical coverage did substantially increase intraspecific variation reducing the barcoding gap between species, this did not decrease species identification using neighbour-joining clustering. The inclusion of additional populations increased the number of paraphyletic entities, but did not impede species-level identification, because paraphyletic species were separated from their monophyletic relatives by substantial sequence divergence. Thus, this study demonstrates that DNA barcoding remains an effective identification tool even when taxa are sampled from a large geographical area.
منابع مشابه
Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe.
DNA barcoding aims to accelerate species identification and discovery, but performance tests have shown marked differences in identification success. As a consequence, there remains a great need for comprehensive studies which objectively test the method in groups with a solid taxonomic framework. This study focuses on the 180 species of butterflies in Romania, accounting for about one third of...
متن کاملInferring species membership using DNA sequences with back-propagation neural networks.
DNA barcoding as a method for species identification is rapidly increasing in popularity. However, there are still relatively few rigorous methodological tests of DNA barcoding. Current distance-based methods are frequently criticized for treating the nearest neighbor as the closest relative via a raw similarity score, lacking an objective set of criteria to delineate taxa, or for being incongr...
متن کاملThe Effect of Geographical Scale of Sampling on DNA Barcoding
Eight years after DNA barcoding was formally proposed on a large scale, CO1 sequences are rapidly accumulating from around the world. While studies to date have mostly targeted local or regional species assemblages, the recent launch of the global iBOL project (International Barcode of Life), highlights the need to understand the effects of geographical scale on Barcoding's goals. Sampling has ...
متن کاملLimited performance of DNA barcoding in a diverse community of tropical butterflies.
DNA 'barcoding' relies on a short fragment of mitochondrial DNA to infer identification of specimens. The method depends on genetic diversity being markedly lower within than between species. Closely related species are most likely to share genetic variation in communities where speciation rates are rapid and effective population sizes are large, such that coalescence times are long. We assesse...
متن کاملSpecies identification reveals mislabeling of important fish products in Iran by DNA barcoding
This study reports on the molecular identification of fish species from processed products which had a priori been classified as belonging to 5 important species in Iran for human consumption. DNA barcoding using direct sequencing of an approximately 650bp of mitochondrial Cytochrome oxidase subunit I (COI) gene revealed incorrect labeling of Narrow-barred Spanish mackerel samples. High occurre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology resources
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2009